Complex Systems in Sport

Edited by
Keith Davids, Robert Hristovski, Duarte Araújo, Natalia Balagué Serre, Chris Button and Pedro Passos
Contents

List of illustrations viii
Contributors xv
Preface xiii
KEITH DAVIDS, ROBERT HRISTOVSKI, DUARTE ARAÚJO AND NATALIA BALAGÜÉ SERRE

PART 1
Theoretical bases for understanding complex systems in sport 1

1 Basic notions in the science of complex systems and nonlinear dynamics 3
ROBERT HRISTOVSKI, NATALIA BALAGÜÉ SERRE AND WOLFGANG SCHÖLLHORN

2 Coordination dynamics and cognition 18
J. A. SCOTT KELSO

3 Why coordination dynamics is relevant for studying sport performance 44
CHRISS BUTTON, JON WHEAT AND PETER LAMB

4 Psychobiological integration during exercise 62
NATALIA BALAGÜÉ SERRE, ROBERT HRISTOVSKI, ALFONSAS VAIDORAS, PABLO VÁZQUEZ AND DANIEL ARAGONÉS

PART 2
Methodologies and techniques for data analyses in investigating complex systems in sport 83

5 Nonlinear time series methods for analyzing behavioural sequences 85
NIKITA KUZNETSOV, SCOTT BONNETTE AND MICHAEL A. RILEY
Contents

6 Interpersonal coordination tendencies induce functional synergies through co-adaptation processes in team sports 105
 PEDRO PASSOS, DUARTE ARAÚJO, BRUNO TRAVASSOS, LUIS VILAR AND RICARDO DUARTE

7 The measurement of space and time in evolving sport phenomena 125
 SOFIA FONSECA, ANA DINIZ AND DUARTE ARAÚJO

8 Self-organizing maps and cluster analysis in elite and sub-elite athletic performance 145
 WOLFGANG SCHÖLLEHORN, JIA YI CHOW, PAUL GLAZIER AND CERIE BUTTON

9 Single camera analyses in studying pattern-forming dynamics of player interactions in team sports 160
 RICARDO DUARTE, ORLANDO FERNANDES, RUGIO POLGADO AND DUARTE ARAÚJO

10 Using virtual environments to study interactions in sport performance 175
 VANDA CORREIA, DUARTE ARAÚJO, GARETH WATSON AND CATHER CRAW

11 Methods of measurement in studying team sports as dynamical systems 190
 DANIEL MEMPERT AND JÜRGEN PERL

12 Team sports as dynamical systems 208
 TIM MCGARRY, JÜRGEN PERL AND MARTIN LAMES

PART 3

Complexity sciences and sport performance 227

13 Ecological dynamics as an alternative framework to notational performance analysis 229
 LUIS VILAR, CARLOTA TORRENTS, DUARTE ARAÚJO AND KEITH DAVIDS

14 Talent development and expertise in sport 241
 ELIUSA PHILLIPS, KEITH DAVIDS, DUARTE ARAÚJO AND IAN RENSHAW

15 Creativity in sport and dance: ecological dynamics on a hierarchically soft-assembled perception-action landscape 261
 ROBERT GREYNOVSKI, KEITH DAVIDS, DUARTE ARAÚJO, PEDRO PASSOS, CARLOTA TORRENTS, ALEXANDR AGISHI AND ALEXANDR TUTEKHEVSKI
Contents

PART 4

Complexity sciences and training for sport

16. Variability in neurobiological systems and training
 Chris Button, Ludovic Seiffert, David O'Donovan and Keith Davids
 277

17. Individual pathways of change in motor learning and development
 Yeou-Teh Liu and Karl M. Newell
 293

18. A constraints-based approach to the acquisition of expertise in outdoor adventure sports
 Keith Davids, Eric Brymer, Ludovic Seiffert and Dominic Orth
 306

19. Skill acquisition and representative task design
 Ross A. Finder, Ian Renshaw, Jonathon Headrick and Keith Davids
 319

Index

334
Contributors

Alexandar Acevski is currently Assistant Professor at the Faculty of Physical Education, University of St. Cyril and Methodius, Skopje, Republic of Macedonia. He has research interests in methods of qualitative analysis and modelling used in biomechanics, particularly as applied to transfer in motor learning.

Daniel Aragonés is a PhD student at the National Institute of Physical Education of Catalonia, University of Barcelona, Spain. His research is currently focused on the psychobiological integration of exercise-induced fatigue.

Duarte Araújo is Associate Professor at the Faculty of Human Kinetics of the University of Lisbon, Portugal. He is the Director of the Laboratory of Expertise in Sport. He is the President of the Portuguese Society of Sport Psychology and a member of the National Council of Sports. His research on ecological dynamical approaches to expertise and decision making in sport has been funded by the Fundação para a Ciência e Tecnologia.

Natália Balagú Serre is Professor of Exercise Physiology at INEFC University of Barcelona, Spain. Her field of research is complex systems in sport, with special focus on dynamic integrative approaches to exercise-induced fatigue and the nonlinear psychobiological integration during exercise. In 2003, she organized the first Complex Systems in Sport Congress, which was held in Barcelona. Co-author of Complejidad y Deporte and papers relating to the effects of exercise-induced fatigue on attention focus, perceived exertion and exercise termination.

Scott Bonnette received a BA in psychology from Wheeling Jesuit University, USA, in 2009 and a MA in experimental psychology from the University of Cincinnati, USA, in 2013. He is currently a graduate student at the University of Cincinnati. He has been involved with research and publications concerning the nonlinear analysis of postural control and with research on how exploratory movements facilitate perception.

Eric Brymer is a psychologist and Senior Lecturer in the Faculty of Health at Queensland University of Technology, Australia. His research focuses on
investigating nature-based activities, adventure and extreme sports. Eric is interested in the broad psychological understanding of the experience, the development of skill and how such activities enhance positive health and well-being. He is particularly interested in the role of the physical environment and how to design and facilitate nature-based experiences so that positive outcomes for the environment and people are optimised.

Chris Batten is Associate Professor of Motor Learning at the University of Otago, New Zealand. His research interests include the ecological dynamics approach to motor learning and human behaviours in relation to water safety.

Jia Yi Chow is Assistant Professor at the Physical Education and Sports Science Department, National Institute of Education, Nanyang Technological University, Singapore. His area of specialization is in motor control and learning. Jia Yi’s key research work includes nonlinear pedagogy, investigation of multivariate coordination changes, analysis of team dynamics from an ecological psychology perspective and examining visual-perceptual skills in sports expertise.

Vanda Correia is Assistant Professor at the University of Algarve in Faro, Portugal. She did her PhD in Sport Sciences at the Faculty of Human Kinetics of the University of Lisbon, Portugal. Specializing in decision making in team sports, Vanda is particularly concerned with understanding how the dynamics of players’ interactions express adaptive behaviours to performance constraints and are coupled with key information sources. She has been conducting research both in the field and in virtual reality settings.

Cathy Craig is Head of the School of Psychology of Queens University Belfast, Northern Ireland, and Director of the Movement Innovation Laboratory of that institution. She completed her PhD at the University of Edinburgh under the supervision of Professor Dave Lee in the Perception in Action Laboratories.

Keith Davids is Professor of Motor Learning at the Centre for Sports Engineering Research at Sheffield Hallam University in the UK. He currently holds additional appointments at the University of Jyväskylä in Finland (FIDIPro) and at the Queensland University of Technology in Australia. He is a graduate of the University of London and gained a PhD at the University of Leeds in 1986. Between 1993 and 2001, he led the Motor Control group at the Department of Exercise and Sport Science at Manchester Metropolitan University, UK. In 2002 he moved to the University of Otago in New Zealand before taking up an appointment at the Queensland University of Technology in Australia. Currently he supervises doctoral students from Portugal, UK, Australia and New Zealand. His major research interest involves the study of movement coordination and skill acquisition in sport. He is particularly focused on understanding how to design representative learning and performance evaluation environments in sport.

Ana Diniz is a teacher and researcher at the Department of Mathematics of the Faculty of Human Kinetics, University of Lisbon, Portugal. Her investigation
includes mathematical methods and models related to motor control and interpersonal coordination processes.

Ricardo Duarte is Lecturer in Training Methods of Soccer at Faculdade de Moradia Humana, Portugal. His academic career involves mentoring young football coaches, developing research on tactical behaviours in soccer with applications to training and performance analysis and presenting his perspective in applied soccer training courses, congresses and seminars around the world.

Orlando Fernandes is Assistant Professor at the Department of Sport and Health of the University of Évora, Portugal. He is an expert in biomechanics of human movement, with particular interest in signal processing and nonlinear analysis of time-series data. His expertise has been also transferred to the preparation of some elite athletes in track and field sports.

Hugo Folgado is Lecturer at the Department of Sport and Health, University of Évora, Portugal, and collaborator at the Research Center for Sport Sciences, Health and Human Development, Portugal. He is currently working on his PhD studies about football players' movement synchronization. His research interests are performance analysis and expertise in team sports.

Sofia Fonseca has a degree in statistics from the Faculty of Sciences of Lisbon (1999), a PhD in statistics from the University of Aberdeen (2004) and a PhD in sports science from the University of Lisbon (2012). Sofia has been Assistant Professor at the Faculty of Physical Education and Sports, Lusofona University, Lisbon, Portugal, since 2006. Her research interests are team sports behavior, particularly modeling players' and teams' spatial organization.

Paul Glazier is a Research Fellow at the Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Australia. He has expertise in sports biomechanics, motor control, skill acquisition and performance analysis of sport. He has authored or co-authored over 40 peer-reviewed journal articles, invited book chapters and published conference papers in these areas. Paul also has a wealth of practical experience, having provided sports biomechanics and performance analysis services to a wide range of athletes and teams, from regional juniors to Olympic and World Champions, in a variety of sports.

Jonathon Headrick is a PhD scholar at the School of Exercise and Nutrition Sciences, Queensland University of Technology, Australia. His research interests include the application of an ecological dynamics approach for studying the role of emotion in learning and skill acquisition in sport.

Dr Robert Hristovski is currently Professor at the Faculty of Physical Education, University of Ss. Cyril and Methodius, Skopje, Republic of Macedonia. He obtained his MSc degree in 1994 and a PhD degree in 1997 at the Faculty of Physical Education. In 2001 he had a five-month research visit at the Institute of Nonlinear Science at the University of California, San Diego. He has
research interests in methods of analysis and modelling in nonlinear dynamics, particularly as applied to human action selection and adaptation during training. He is also an invited lecturer on masters and doctoral courses at several European universities.

J. A. Scott Kelso is a neuroscientist and Glenwood and Martha Creech Chair in Science, Professor of Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, USA, and Professor of Psychology, Biological Sciences and Biomedical Science at the University of Ulster (Magee Campus), Derry, Northern Ireland. He has worked on coordination dynamics, the science of coordination and on fundamental mechanisms underlying voluntary movements and their relation to the large-scale coordination dynamics of the human brain. His experimental research in the late 1970s and early 1980s led to the HKR model (Haken-Kelso-Russo), a mathematical formulation that quantitatively describes and predicts how elementary forms of coordinated behaviour arise and change adaptively as a result of nonlinear interactions among components.

Nikita Kuznetsov received a BA in psychology from California State University, Northridge, in 2008, and a PhD in experimental psychology from the University of Cincinnati in 2013. He is currently a post-doctoral associate at Northeastern University, USA. His research focuses on perception-action from the complex/dynamical systems perspective and the application of nonlinear methods in motor control.

Peter Lamb was born in Canada and obtained a PhD in biomechanics from the University of Otago, New Zealand, in 2010. Currently, Peter is Associate Researcher at the Technische Universität München (TUM), Germany. As head of research and diagnostics at the TUM Golf Laboratory, Peter works with national-level golf teams and their coaches, as well as private golfers. Part of his work includes applying the constraints-led perspective to coordination of the golf swing in search of critical boundaries of stability. The implications are both for theoretical aspects of human movement, as well as golf-specific applications to training and on-course strategies. Peter is an avid golfer, skier, cyclist and ice-hockey player.

Martin Lames is full Professor at the Faculty of Sports and Health Science at the Technical University of Munich, Germany. His main research interests are modelling of sports performances, talent research and top-level sports, with special focus on information technology support. He has served as President of the International Association of Computer Science in Sport (IACSS) since 2013.

Yen-Teh Lin was born and raised in Taipei. She received her PhD in kinesiology from the University of Illinois at Urbana-Champaign, USA, and is currently Professor in the Department of Athletic Performance, National Taiwan Normal University. Her research focuses on the dynamics of motor skill acquisition, movement adaptation and motor control. Her other research
interest is in the performance analyses in competitive sports including both
team and individual sport events.

Tim McGarry is Associate Professor in the Faculty of Kinesiology, University
of New Brunswick, Canada. He has published many journal articles and book
chapters on various aspects of movement control and sports performance. He
serves as an advisory editorial board member on the Journal of Sports Sciences
and the International Journal of Performance Analysis in Sport and is co-

Daniel Memmert is Professor and Head of the Institute of Cognitive and
Team/Racket Sport Research, German Sport University of Cologne. His
research interests are cognitive science, human movement science, computer
science and sport psychology. He has 15 years of teaching and coaching ex-
perience, has published more than 100 publications, 20 books or book chapters
and is a recognised figure through his multi-keynotes in football. He is a
reviewer for several international journals and has transferred his expertise to
business and to several professional soccer clubs within the Bundesliga.

Karl M. Newell PhD is the Marie Underhill Noll Chair of Human Performance
and Professor, Department of Kinesiology, Pennsylvania State University,
State College, USA. His research focuses on the coordination, control and skill
of normal and abnormal human movement across the life span; developmental
disabilities and motor skills; and the influence of drug and exercise on move-
ment control. One of the specific themes of his research is the study of
variability in human movement and posture, with specific reference to the
onset of aging and Parkinson’s disease. His other major research theme is
processes of change in motor learning and development that is the focus of his
chapter contribution to this book.

David O’Donovan is a postgraduate student who currently works for High
Performance New Zealand as a knowledge editor. He completed his Masters
in 2011 in which he examined the throwing kinematics of elite athletes with
cerebral palsy. He has worked as a coach and sport science provider for Boccia
New Zealand and he has supported athletes participating in World
Championships, Commonwealth and Paralympic Games.

Dominic Orth is a PhD student at the University of Rouen, France, and
Queensland University of Technology (QUT), Australia. He completed his
undergraduate and Masters degree by research at the School of Exercise and
Nutrition Science at QUT. His research programme examines the role of adap-
tive movement variability in skilled climbers.

Pedro Passos is Assistant Professor at the Faculty of Human Kinetics, University
of Lisbon, Portugal. He gained his PhD in sport sciences in 2008. His research
involves the study of the dynamics of interpersonal coordination in team
sports, which led him to produce several papers accepted for publication in
scientific journals, book chapters, as well as communications in scientific
meetings. He currently maintains his research work regarding interpersonal coordination in social systems as team sports and extending the paradigm of analysis to video games cooperative tasks, searching for new methods of analysis and extending his collaboration with researchers in Portugal, across Europe, Singapore, Australia and New Zealand. He supervises masters’ and doctoral students from Portugal. Parallel with his research activity, he is also technical coordinator of a rugby union club. In his leisure time, he practices mountain biking, surfing and alpine skiing.

Jörgen Peri is Professor Emeritus of Computer Science, University of Mainz, Germany. His main research interests using modelling and simulation methods include pattern recognition of game behaviours and player movements, as well as physiological load performance dynamics. He is a founding member of the International Association of Computer Science in Sport, serving as President from 2003–2007 and as Honorary President thereafter.

Elissa Phillips is Senior Biomechanist at the Australian Institute of Sport. Elissa’s responsibility includes implementing a programme of biomechanical services and research for athletes and coaches to enhance performance. Recent research has focused on feedback technology and coordination profiling in expert performance.

Ross Pinder is Lecturer in Sport and Exercise Sciences at the University of the Sunshine Coast, Australia. He is primarily interested in maximising skill learning in sport through the design of representative experimental and practice environments. He currently works as a skill acquisition and high-performance consultant for the Australian Paralympic Committee.

Ian Reashaw is Senior Lecturer, Queensland University of Technology, Brisbane, Australia. Ian’s teaching and research interests are centred on applications of ecological dynamics to sport settings. Given Ian’s background in physical education and coaching, he is particularly interested in enhancing pedagogical practice. Recent research has focused on developing the links between sport psychology and skill acquisition; implementing constraints-led approaches in physical education; emotions and learning in sport talent development; developing expertise in cricket and visual regulation of run-ups. Ian has worked with numerous sports providing coach education and skill acquisition advice.

Michael A. Riley received a BA in psychology from the University of Louisiana-Monroe, USA, in 1994 and a PhD in experimental psychology from the University of Connecticut, USA, in 1999. He is currently Professor of Psychology and Director of the Center for Cognition, Action and Perception, University of Cincinnati, USA, where he has been on the faculty since 2000. His research on ecological and complex dynamical systems approaches to perception–action has been funded by the National Science Foundation and the US Army Medical Research and Materiel Command.
Wolfgang Schöllhorn is Professor for Movement and Training Science and Director of the Institute of Sport Science at the University of Mainz, Germany. With a background in physics, sports, pedagogy and neurophysiology his research areas include dynamic systems, adaptive behaviour, learning and brain states, biomechanics, signal analysis and pattern recognition.

Ludovic Seiffert is Associate Professor at the Faculty of Sport Sciences, University of Rouen, France. He conducts his research in the field of motor learning and motor control regarding expertise in sport, movement variability and temporal dynamics of learning. He gained a PhD in expertise and coordination dynamics in swimming at the University of Rouen in 2003, then a certification to direct research in 2010 entitled ‘Motor coordination and expertise: A complex and dynamical system approach of sport and physical education’, for which he exhibited numerous publications in this field. He is also a mountain guide certified by the International Federation of Mountain Guides Associations and now investigates expertise and motor learning in climbing.

Carlota Torrents is a teacher of expressive movement and dance and a researcher at the Human Motor Behavior and Sport Laboratory, National Institute of Physical Education of Catalonia, University of Lleida, Spain. She completed her PhD in complex systems applied to training methods and has published international books and papers related to complex systems, dance and sport.

Bruno Travassos is Assistant Professor at the Department of Sport Sciences, University of Beira Interior, Portugal, and member of the group of performance analysis at CIDESD – Research Centre in Sports, Health Sciences and Human Development, Portugal. His research interests are in the area of game analysis and also in the learning processes and decision-making behaviour of players in team sports with special emphasis in futsal and soccer.

Aleksandar Tufekcic is Professor at the Faculty of Physical Education, University of St. Cyril and Methodius, Skopje, Republic of Macedonia. He has research interests in methods of qualitative analysis and modelling used in biomechanics, particularly as applied to transfer in motor learning.

Alfonso Vainoras is Professor at the Lithuanian University of Health Sciences. He investigates novel methods of analysis of the electrocardiograph using complex systems approach and analysis tools. He has participated in the development of the E-Health Program in Lithuania and Europe.

Pablo Vázquez is a PhD student at the National Institute of Physical Education of Catalonia, University of Barcelona, Spain. The focus of his research is the application of complex systems principles on processes related to motor and performance changes under fatigue.

Luis Vilar completed his PhD in sports sciences, investigating the informational constraints on attacker and defender performance in futsal. Currently, he is
Contributors

Assistant Professor at the Faculty of Human Kinetics, University of Lisbon, Portugal, and at the Faculty of Physical Education and Sports, Lusófona University of Humanities and Technologies, Portugal. He teaches UEFA-pro courses for coaches. He is also head of youth football department and coach at Colégio Pedro Arrupe. He was a football and a futsal player.

Gareth Watson gained a BSc in psychology from Queens University Belfast, Northern Ireland, and concluded his PhD in mechanical and aeronautical engineering and psychology at the same university.

Jon Wheat is a Principal Research Fellow in Biomechanics, Centre for Sports Engineering Research (CSER), Sheffield Hallam University, UK. He gained his undergraduate degree in sport and exercise science from Manchester Metropolitan University before completing his PhD at Sheffield Hallam University. Jon works on biomechanics research and consultancy projects in CSER and teaches on the MSc sports engineering and MSc sport and exercise science degrees. His work is influenced by the ecological approach to motor control and dynamical systems theory and he has a keen interest in the development and application of biomechanics measurement systems for use outside the laboratory, in more representative settings. He leads the Biomechanics Research Group in CSER which has several research and consultancy projects in this area.
Creativity in sport and dance

Ecological dynamics on a hierarchically soft-assembled perception–action landscape

Robert Hristovski, Keith Davids, Duarte Araújo, Pedro Passos, Carlota Torrents, Alexandar Aceski, and Alexandar Tufekciévski

Innovative and creative goal-directed behaviours in complex neurobiological systems, such as apes and birds, has been studied extensively (see, e.g. Reader and Laland 2001, Tylor et al. 2010) and involves the discovery of novel patterns of behaviour by an organism. There has not been the same focus on creative behaviour in sport; although much research in sport sciences and pedagogy has been aimed at improving athletic performance. Traditionally, performance optimization methods have been implemented to identify the set of movement parameters that might maximize competitive outcomes for specific elite athletes (e.g. Bartlett 2007). However, as in the case of Dick Fosbury, the elite high jumper, sometimes exploration of novel movement patterns can not just improve performance but actually push it to a new, higher level.

Such advances occur, not by optimizing model parameters of an existing well-established technique but by construction of new coordination patterns. This creative advance can resolve problems with a previous technique, shape performance outcomes and enrich movement culture, making specific sports more diverse and more aesthetically attractive. On the other hand, the sociocultural influence on the performer or the team put strong constraints of nonspecific and specific kind (for more on this issue see Hristovski et al. 2011). The changes in socioculturally induced nonspecific task constraints, like the type of tool used or environment on which is acted upon, may be instrumental in eliciting innovative performer–environment relations (e.g. Bril et al. 2005). On the other hand, specific social influences, i.e. imitation of extant performer–environment relations, are constraining athletes to comply with these movement forms within the sociocultural milieu. However, complying with extant movement forms is just the opposite from creativity defined as process of exploration and production of novel and functional behaviour. Drizin et al. (1999) and Sternberg and Lubart (1996) provide detailed explanations of these two basic types of creative behaviour, respectively.

Investments of novel performance solutions occur regularly in sport and have been well documented in activities like track and field, exemplified by the
Multistability as a prerequisite for creativity in neurobiological systems

The multitude of solutions or states available in complex performer–environment systems is a consequence of the wealth of potential nonlinear couplings available between system components (or between system agents in sports teams as social neurobiological systems e.g. Challet et al. 2000). Degeneracy, pleiotropy and multistability exemplify performer–environment properties that support such nonlinearity and complexity. In short, degeneracy means that different structural components may be assembled to satisfy the same task goal constraints and pleiotropy means that the same structural component can have a role in satisfying different task goals. Multistability (see Chapter 1 and 2 for definition) is a prerequisite for an important property of complex systems metastability, i.e. the capacity to possess numerous functional, coexistent pattern-forming propensities (e.g. Bressler and Kelso 2001; Kelso et al. 2000). It is a prerequisite, since metastable dynamics can exist only in systems which have more than one attracting states under the same longer-term constraints. In such systems, the behaviour can dwell for some time in the vicinity of the attractor or attractive point and then switch to another one. The monostability of linear systems does not allow such metastability. This property of performer–environment systems, allows system states (qua performance solutions) to be soft-assembled, emerging under specific constellations of boundary conditions as constraints. These system states are not preformed but emerge under interacting constraints, basic principles that underpin the constraints-led perspective on skill acquisition in sport (David et al. 2008; Davids et al. 2013; Davids et al. 2003; Araújo et al. 2004, 2006; Davids et al. 2005; Chow et al. 2006; Newell 1986).

The distinctive configurations of constraints between learners, based on a platform of system degeneracy and pleiotropy, are manifested in how each individual attempts to satisfy specific task constraints during practice. Inventing a new technique or a movement form (i.e. coordination) is always defined as being in the coordination stage of learning, which can be afterwards, through practice, made more functional (for more detailed discussion, see Hristovski et al. 2012). The invented coordination, of course, may be supported and contextualized by already-stabilized skills. Individual creativity is a product of the interactions of three nonlinear properties: cause–effect nonproportionality, parametric
(constraint) control and multistability in complex systems (for definitions, see Chapter 1 and 2; Hristovski et al. 2009). Within these interactions, nonlinear pedagogy (e.g. Chow et al. 2006) frames the individuality of learning pathways and individual creation of performance solutions for a given movement task. Based on these arguments, we next outline a nonlinear, complex systems model of creativity in sports and physical activity.

Ecological dynamics on a hierarchically soft-assembled potential landscape: a model outline

The empirically-based, hierarchical structure of human movement variability (see e.g. Chow et al. 2008) provides an explanation of the behavioral characteristic of creativity within the framework of statistical mechanics of disordered systems; i.e. systems with many different but ordered states, particularly the replica symmetry-breaking framework first developed by Parisi (e.g. Parisi 1979). The hierarchical structure of movement variability implies a rugged landscape with many nested metastable minima (Hristovski and Davids 2008), within the global basin of attraction. For clarification, one such landscape is depicted for fixed task constraints in Figure 15.1.

The main idea behind this model is the absence of any simple symmetries of potential order parameters (see Chapter 1 and 2) governing discrete and whole body movements. In other words, in principle, it is hard to relate two or more actions through simple symmetry transformations. For example, in the HKB

![Diagram of performer-environment configurations](image)

*Figure 15.1 Schematic (i.e. one-dimensional) presentation of the corrugated hierarchically soft-assembled potential landscape with two confining barriers on both sides (reproduced with kind permission from *Nonlinear Dynamics, Psychology and Life Sciences*, Springer)*
(Haken, Kelso and Bunz) model (Haken et al. 1985), the relative phase order parameter exhibits mirror (change of the sign) symmetry, which allows one to relate a set of patterns; i.e. values of the order parameter, with those symmetries. However, a set of whole-body movements/postures or multiarticular discrete movements in sport or dancing, generally, cannot be related by simple symmetries and their rearrangements. Hence, the relatedness of any set of discrete and whole-body movements may be made by the so-called overlap order parameter, which measures the mutual correlation of this kind of actions. It can be defined as a cosine of the angle between two random vectors, i.e. \(\mathbf{q} \), in real or formal space of any finite dimension (e.g. Domany et al. 2001). Under absolutely relaxed constraints, one may expect that these replicas are totally uncorrelated and their average correlation is \(\langle \mathbf{q} \rangle = 0 \). We can say that the system is replica symmetrical. Any replica, i.e. performer–environment configuration, can emerge. However, under constraining influences of the task, properties of the individual performer and the environment, this symmetry and ergodicity is broken and clusters of correlated actions arise (for detailed examples, see Hristovski et al. 2011, 2012). Some similar replicas, i.e. configurations, are more likely to occur and some are unlikely. Constraints break system symmetry, produce a phase transition and also create ergodicity breaking high barriers on the both sides of the potential landscape, confining all available actions within the internal space (Figure 15.1). It can be observed that the action landscape soft-assemblies under specific constraints configurations.

These correlated clusters form a hierarchical landscape. Actions lying in one attractor basin (see Chapter 1 for definition), separated by smaller barriers are more correlated than those separated by higher barriers. Thus, we can define order parameters at each level, with those defining lower levels depending on increasingly subtle constraints. These order parameters form a tree-like structure. Note that, while slowly changing (i.e. quasi-stationary) interacting constraints, are forming the deterministic structure of the landscape (see Figure 15.1 and the previous text), there is also a need of stochastic agitation force within the performer–environment system, mainly contributed by the interaction between performer’s intention to move and the unpredictable and quickly changing physical and information constraints, which are the driving force of reconfigurations. Hence, both the deterministic structure and the stochastic drive interact in reconfiguring the systems dynamics. The exploratory dynamics within this landscape, may be seen as a hopping of the system from one basin to another or equivalently as a random walk on a tree. The hopping or the random walk has a meaning of reconfigurations within the system that are taking place. Hopping over larger barriers means larger reconfigurations and vice versa.

This modelling shows how exploration is a requisite of creative behaviour, i.e. inventing novel or innovating extant movement forms and actions with respect to the extant sociocultural milieu (for details see Hristovski et al. 2011). Without it, a complex neurobiological system cannot find novel functional behavioural solutions. In Hristovski et al. (2011), exploratory breadth \(Q \) was defined as being equal to the average escape probability over all possible state basins of attraction
(see Saxton 1996). \(Q = W_r \). Escape probabilities for each movement mode are defined as \(W_r = 1 - W_e \), where \(W_r \) is the conditional probability of staying inside the same attractor (Hristovski et al. 2009). In other words, \(W_r \) measures the trapping strength of the attractor; i.e., the probability of being able to achieve the same performance outcomes sequentially. The larger the average escape probability \(W_e \), the larger the exploratory breadth \(Q \) of the system and vice versa. In general, it can be said that: for any performer-environment system containing a large amount of degrees of freedom, there always exists a set of constraints which maximizes the functional action versatility, i.e., exploratory breadth, defined as maximum action entropy (see e.g., Hristovski et al. 2006; Pinder et al. 2012). A more thorough exposition of this model and an experimental example of novel action emergence in martial arts can be found in Hristovski et al. (2011) and Hristovski et al. (2012).

In the following section, we further illustrate how this theoretical model provides an analysis of movement exploration structure and dynamics applied in context of dance improvisation. The general predictions of a hierarchical structure and softly assembled dynamics were preliminarily tested. A conceptual model of creativity in team sports within the general framework of dynamical systems is also presented.

How creative behaviours emerge under ecological constraints in dance and team sports

Creative behaviour in contact improvisation dance: a soft-assembled hierarchy model analysis

Contact improvisation is a form of dance where contact points between and movements of partners constrain each other’s subsequent movements. What are the creative aspects of contact improvisation? Contact improvisation may be thought of as a bank of emergent human movement forms and an expression of continuous exploration and discovery of idiosyncratic postures and actions supported by immediate affordances; i.e., opportunities for action. It is used systematically as a dance research method for identifying innovative set choreography. The invented novel forms of movement, being themselves creative products, could afterwards be stylized and put to a further use. These properties of contact improvisation make it a highly creative activity satisfying both, the process and the product definitions of creativity as a phenomenon (for those definitions, see (Dravin et al. 1999; Sternberg and Lubart 1996). This characteristic of contact improvisation fits nicely within the general approach in our experiments for discovering the dynamical, perception-action landscape of sport/dance performers which involves probing system activity by letting it evolve autonomously under specific task constraints manipulations over a period of time.

Here, we describe some results of an analysis of a typical contact improvisation session lasting 450 seconds under no special instructional constraints, except those provided by the contact with the partner, i.e., visual and haptic information,
and the force of gravity. Sequences of actions/postures were analyzed to determine their complex dynamical characteristics. Actions/postures were defined on a coarse-grained scale containing 52 movement/posture components, such as support/contact characteristics and directions and planes of motion of body segments according to established observational methodology (see Torrents et al. 2010; Castaño et al. 2009). To the active components a value of 1 was ascribed and to the inactive components a value of 0. Hence, a binary matrix was formed with a time resolution of 1 second. Each 1-second window was defined as a 52-component binary vector representing the action configuration during the same time interval. Reconfigurations, i.e. mutations of action patterns were calculated as Hamming distances between any two binary vectors. For example, the change of one component of the vector from 1 to 0 or vice versa has a Hamming distance equal to 1. Hence, the Hamming distance actually measures the height of the potential barrier between two configurations. Overlap order parameter q was used to determine the structure of the potential landscape of the dancer and its dynamic properties. The overlap was defined in two intrinsically related association measures: as a cosine similarity and as a Pearson correlation between two binary configuration vectors. A hierarchical principal component analysis (HPCA) was performed on the data using the second measure (for the plausibility of using principal component analysis on binary variables, see Jolliffe 2002, p. 339), with the aim of detecting the possible nested attractor basin structure of the dancer's action landscape. In order to determine not only the structure of dancer's complex movement patterns but also their exploratory dynamics, the dynamic overlap $q(t)$ was calculated as an average cosine autosimilarity of the overlap between configurations with increasing time lag.

The HPCA initially revealed 25 principal components. Seven primary principal components accounting for 81.3% of the total variance were taken into account. The first, the fifth, the sixth and the seventh principal component were weakly but significantly correlated $<q^2 = 0.401 \pm 0.02$. The other 18 principal components contained statistically rare and short-lived reconfigurations having a role of fluctuations. This structure is interesting in itself. While the dominant dynamics were confined within the seven principal components, the reconfiguration space was with significantly higher dimension. This gives a picture of lower-dimensional global dynamics connected by high-dimensional quick reconfigurations. Seventeen movement–posture components had very high scores on these seven principal components. Consequently, the dynamics were saturated predominantly by these emergent movements–posture patterns.

The secondary level consisted of two principal components containing the seven primary principal components as substructure. Hence, the HPCA procedure reduced the dancer's dynamics dimensionality from 449 configuration vectors to the two slowest collective variables (order parameters) containing seven faster variables, each of which was formed by even faster movement/posture configuration vectors. The median dwell time of these configuration vectors was 5.4 seconds. This structure revealed a metastable dynamics in a soft-assembled hierarchy of collective variables with different characteristic time scales (for intuitive
understanding, see Figure 15.1). The global and the slowest collective variable consisted of degrees of freedom such as foot-floor surface support, support of the partner with lower and upper limbs and the trunk-torso-back-pelvis surfaces. They were present, with only quick interruptions, over the whole observation timescale. This persistent collective variable formed the global basin of attraction and continually constrained the faster degrees of freedom such as a change in the direction of movement, lateral or forward flexion of the trunk, arm movements, and so on. These degrees of freedom under constraining influence of the slow collective variable formed short-lived metastable states (local basins of attraction) on the lower hierarchical level. In other words, the slowest collective variable formed rather persistent pinning surfaces between partners, nucleuses, around which more quick movement motifs were created.

In the upper panel of Figure 15.2, one can see a zoomed example of metastable dynamics of the first 35 seconds, where the action system of a dancer transits from one local metastable configuration attractor basin to another, meanwhile dwelling inside one of them for several seconds. These four principal components extracted from the first 35 time-ordered configurations were correlated $<q> = 0.64 \pm 0.05$ and belonged to a secondary global confining attracting basin (secondary principal component). At each moment, several opportunities for action coexist, owing to informational constraints from the partners and the floor, the gravity and the abundance of nonlinearly coupled degrees of freedom within the system of dancers. Which one of these coexistent propensities will become a temporary solution, i.e. a creative product, depends on subtle and quick information, i.e. fast perceptual-motor degrees of freedom and decisions dressed with randomness, e.g. who will lead and who will follow in the immediate future interval. Aside from their common motive to move, randomness is a crucial part of the dynamics because partners do not deterministically guide each other, i.e. with perfect probability ($P = 1$). Each temporary posture or movement solution is a creative product embedded within the creative exploration dynamics. Hence, 'exploratory' or 'process' and 'product' properties of creative behaviour are becoming obvious (Drazin et al. 1999; Sternberg and Lubart 1996).

The darkest areas of the centre panel of Figure 15.2 correspond to maximum overlap q values of certain configurations with the certain principal component and represent the locally attracting configurations. The increasing lightness in the confuromgram signifies a lower overlap and represents the local attracting basin around the attractor configurations. One can notice that from the darkest areas (local potential minima) going outwards the lightness increases, reaching in some areas the lightest grey colour, which represents saddles or barriers of the potential landscape. Looking at the lower panel of Figure 15.3, where Hamming distances count the number of reconfigurations or mutations that have occurred, we see that these lighter shaded areas correspond to the intervals of reconfigurations of the action system of the dancer. Hence, reconfigurations correspond to crossing over the potential barriers (saddles) between two metastable minima.

The evolution of the cosine autosimilarity, i.e. the average dynamic overlap $<q(t)>$, is given in Figure 15.3. If the dancers stayed in one posture during whole
Figure 15.2 (Top) snapshots of the four measurable states of dancers for the first 3.5 seconds of improvisation; (middle) overlaps q of the four measurable body configurations with principal components (axis 1) and pathway of their dynamics. Overlap values are given in the legend on right (bottom): reconstructions are given as nonzero Hamming distances of the dancer’s action system; after some reconstructions take place, the action system relaxes and dwells in a state where no further reconstructions occur for some time; i.e. zero reconfiguration; this process represents the measurable
observation time lasting seven minutes, the average dynamic overlap would be a constant equal to one; i.e. \(\langle q(t) \rangle = 1 \) for all time lags (see the dashed line on Figure 15.3). On the other hand, if during the performance, the dancers were exploring distant configurations of the whole state space (a case of unbroken ergodicity), the average dynamic overlap \(\langle q(t) \rangle \) would drop to zero exponentially fast for the observation time of seven minutes (see the dotted curve on Figure 15.3). Neither of these cases was obtained in the observed performance. The fact that the relaxation of \(\langle q(t) \rangle \) was not exponential, means that there was no single characteristic time of the dynamics. In other words, the dynamics contains a distribution of relaxation times and thus a distribution of attractor basins of different depth (barriers of different height), which is consistent with the predictions of the model of soft-assembled hierarchy explained briefly previously. According to the model, Figure 15.3 can be interpreted in the following way. The dancer explores subsequent movement configurations, which are correlated; i.e. lying within a local basin of attraction defined by the correlated principal component substructure and makes, on average, small gradual reconfigurations. On average, after longer times, she hops into attractor basins which are less correlated with previous ones, i.e. moves within another set of principal components. These reconfigurations with time accumulate and bring the dancer far enough from a certain initial configuration. That is why the dynamical overlap \(\langle q(t) \rangle \) decreases for the first 35 time lags, forming the initial relaxation dynamics. The linear fit in log-log plot of this initial relaxation was \(\beta = 0.293 \) with explained variance \(R^2 = 0.977 \). This variable roughly shows the rate of exploration of the system. One can see that even movement configurations separated by 20 seconds possess overlaps larger than 0.5. However, on average, movement configurations separated in time by more than 25 seconds show a constant average overlap of approximately \(\langle q(t) \rangle = 0.45 \). This is the value of the

\[\begin{align*}
\langle q(t) \rangle & = 0.45 \\
\end{align*} \]

Figure 15.3 The profile of the average dynamic overlap \(q(t) \) for different time lags; its dynamics proceed on three timescales (from seconds to several minutes) and does not converge to zero during the observation time scale
average overlap of all the dancer's movement configurations that emerged within
the seven-minute contact improvisation. In other words, this is the self-overlap
value of the superbasin of attraction confining all of the metastable valleys of
movement configurations captured by the hierarchical principal component struc-
ture. Since the dynamic overlap forms a plateau at values far from zero, the
system does not explore arbitrarily distant movement configurations (ergodicity
is broken on the observational time scale of seven minutes), because the slowest
collective variable (see the previous discussion), confine the emergent metastable
opportunities for action and, consequently, the movement dynamics, in a rela-
tively large but limited region of performer-environment state space.
Nevertheless, the plateau value \(\langle q(t) \rangle = 0.45 \), shows a relatively high
exploratory; i.e. creative flux of the system. The fact that the dynamical over-
lap, during the observation time of seven minutes, did not decrease to zero means
that the global relaxation (equilibration) time of the slowest order parameters
(secondary principal components) diverged (did not go to zero) and the system
was in a nonequilibrium state. This means that while there was an equilibration
within the confined region (primary principal components), the space of all possi-
able configurations remained far from being fully explored. Such slow dynamics
is consistent with predictions of the previously discussed theoretical model of
soft-assembled hierarchical dynamics. The exploratory breadth of dancer's move-
ment system \(Q \) (see previous section) defined as an average escape probability
from a certain configuration was \(Q = 0.37 \), showing a significant exploratory
capacity under relaxed constraints.

In this section we have shown how exploratory, i.e. process and product
aspects of creative behaviour can be analyzed within the model of soft-assembled
hierarchy. The creative process unfolds on more time scales, owing to the hierar-
chical structure of the perception-action landscape. The soft-assembled
hierarchical landscape model predicts also other interesting phenomena, such as
aging: the more time the learner spends in a confined and thus correlated region
of the landscape, the less responsive s/he becomes to a change. Based on the
obtained consistency of the experimental results with respect to the predictions of
the theoretical model, we further hypothesize that, together with \(Q \), the slope of
initial relaxation \(\beta \) and the value of the \(\langle q(t) \rangle \) plateau, are good candidates for
assessing the creative capacity of performer-environment systems under different
types and strengths of constraints (for details see Hristovski et al. 2011). Future
work is needed to test other predictions of the model.

Conceptual modelling of creative behaviour in team sports: the need
to play within critical regions of interpersonal distance

Attacker's interactions aim to actively explore space-time windows that emerge
because of defender displacements. On the other hand, defender displacements
aim to cover the possible paths to goal, which demands high levels of interper-
sonal coordination among the players in defence. However, space-time windows
will only emerge if the attackers' movements are powerful enough to disturb the
defenders' interpersonal coordination and, to do that, attackers' actions must be performed within short distances of attacker–defender interpersonal distance (Passos et al. 2008).

Thus, sudden changes in the attacker–defender structural organization can only happen when the attacker–defender systems moved towards regions of very short interpersonal distances, where the contextual dependency among players emerge, characterizing the performance region as critical. Within these critical regions, the players' contextual dependency moves the system from equally poised options to a single option, that emerges under the influence of task and environmental constraints. In other words, within these critical regions, creativity occurs as ongoing performance solutions emerge and are annihilated, until a sudden change occurs where a single, i.e. creative solution, emerges (Passos et al. 2009). In this sense, within critical regions, exploratory metastable behaviour emerges as a precursor to the creative product, i.e. the single solution. Hence, both the exploratory and product phase of creative behaviour exist (Drazin et al. 1999 and Sterberg and Lubart 1996). The players' contextual dependency creates local information that originates at a specific moment in time and space where a gap in the defensive system emerges and the attackers exploit it to move closer to the goal or even score. This process underlines the notion that creativity in team sports is based upon a self-organization mechanism that only occurs within critical regions.

Creativity in team sports is sustained by the nonlinear interactions among players, which enable nonproportional, abrupt and unpredictable environment for the opponents. As in any other social system, the way that each player interacts with others in the neighbourhood of play influences the behaviour of players within the same team and this is a requisite to disturb the actions of opponents (Fajen et al. 2009). From an attacker's perspective, the decisions of the ball carrier and support players are based on the perceptions that they have created of the defenders' relative positioning, running-line trajectories and proximity to each other (Passos et al. 2008). On the other hand, the decision making of defenders depends on the perception that they have of the ball carrier's actions as well as the behaviours of the support players (Passos et al. 2008). These variables include interpersonal distances, the speed and running-line trajectories that contain important information concerning the attackers' ability to perform different actions. These variables contain information that are perceived by the players and can specify the action possibilities at each opponent or teammate (Gurris et al. 2002; Weast et al. 2011). This is where creativity emerges, with the need for attackers to perform deceptive actions that creates the impression of multiple different possibilities for action. These deceptive actions can also be characterized by intrateam coordination, where attackers perform a set of previous established movements that are intended to open a space-time window against a stable opposing team. This is when creativity is needed and players need to reorganize, avoiding defenders. This reorganization process is grounded on situational information concerning defenders' relative positions, number, speed and distance to goal (Travassos et al. 2011; Cordovil et al. 2009; Passos et al.
2011). These sources function as task constraints that attackers use to avoid
defenders. The reorganization of attackers is grounded on situational information
that emerges because of opponent players’ nonlinear interactions and is self-
organized.

Typically, attacker–defender interactions are characterized with many subtle
fluctuations in the attacker–defender balance but also with few abrupt changes in
the attacker–defender structural organization, meaning that suddenly the attackers
gain an advantage and are in a crucial position to score.

To summarize, in this chapter, we have outlined a model of creative exploration
and solution (process) emergence as a self-assembly of actions under ecological
constraints. The obtained structural and dynamical hierarchy of the creative behav-
ior, consistent with the model predictions, was demonstrated in a contact
improvisation dance example. The creative process unfolds on different
timescales, owing to the hierarchical structure of the perception–action landscape.
Hence, creativity is a nested process, both structurally and temporally. The exper-
imental examples provided here are extensions of those in Hristovski et al. (2011),
where an emergence of a novel punch in martial arts was treated within the framework
of the same theoretical model. The role of slowly changing or constant
environmental and personal constraints, (i.e. gravity and morpho-anatomical structure
in creative exploratory activity) is provided by their slow contextualizing
function. Quickly changing and stochastic physical and informational constraints
form the base of the unpredictability function in creativity. Through this process
they mould the goal-directed activity of complex systems potentially leading to
inventions of new movement forms or team actions. By manipulation of these key
constraints, athletes structure different types of contexts which eventually lead to
self-assembly of novel forms of actions. In this way, highly motivated athletes, by
self-generated experimentation in the full space of constraints, may facilitate the
emergence of new and functional action forms.

References

Araujo, D., Davids, K., Bennett, S., Button, C. and Chapman, G. (2004) Emergence of
sport skills under constraints, in A. M. Williams and N. J. Hodges (eds) Skill Acquisition

making in sport. Psychology of Sport and Exercise, 7: 653–76.

opportunity? In V. Roux and B. Bril (eds) Stone Knapping: the Necessary Conditions
for an Uniquely Human Behaviour. McDonald Institute Monograph Series,

Identifying and analyzing motor skill responses in body movement and dance. Behavior
Creativity in sport and dance

Hristovski et al.

